2021-7-20 14:06 |
Сегодня развитие водородного транспорта ограничено дороговизной производства чистого водорода. Инженеры из Техасского университета в Остине создали дешёвый способ получения водорода, который можно легко масштабировать для массового производства.
Инженеры из Техасского университета в Остине предложили доступный способ отделения молекулы кислорода от молекулы воды с помощью солнечного света.
Эта технология приближает наступление эры водородного топлива, которая в перспективе приведёт к полному отказу от углеводородов (нефти и газа) в качестве основных источников энергии.
Начнём с того, что водород (H) – самый распространённый химический элемент во Вселенной.
При обычных температуре и давлении воздуха на Земле водород можно встретить в виде бесцветного двухатомного газа (H2). Однако большая часть водорода на Земле содержится в органических соединениях (в связке с углеродом) и воде (H2O).
В присутствии воздуха H2 становится в высшей степени взрывоопасен — при реакции водорода с кислородом высвобождается большое количество энергии.
Поэтому исследователи уже давно рассматривают водород как один из перспективных источников энергии, а создание и использование водородного топлива считается будущим энергетической промышленности.
У водородного топлива есть множество плюсов — оно позволит сократить выбросы углекислого газа в атмосферу, к тому же КПД водородного двигателя заметно выше, чем у двигателя внутреннего сгорания.
При этом минусов у водородного транспорта на сегодняшний день насчитывается тоже немало. Очевидно, что горючесть водорода представляет высокую опасность: как самовоспламенения сжатого газа внутри двигателя, так и возможной утечки газа в салон автомобиля, где малейшая искра может вызвать взрыв.
Кроме этого, сегодня производство водородного топлива зависит от ископаемых углеводородов, и к тому же стоит непомерно дорого.
Поэтому инженеры всего мира стремятся разработать новые экологические чистые методы производства водородного топлива, самым популярным из которых является выделение водорода из воды с помощью солнечного света.
Эта задача сопряжена с несколькими техническими трудностями.
"Вам потребуются материалы, которые хорошо поглощают солнечный свет, но при этом не разлагаются, когда происходит реакция расщепления воды. Оказывается, материалы, которые хорошо поглощают солнечный свет, обычно нестабильны в условиях, которые требуются для реакции расщепления воды, в то время как стабильные материалы плохо поглощают свет", – объясняет соавтор работы профессор Эдвард Юй (Edward Yu) из Техасского университета в Остине.
Всё выглядит так, будто эти противоречивые требования заставляют учёных искать некий компромисс, однако разрешить этот "конфликт" можно и другим способом. Использование комбинации разных материалов – одного, который хорошо поглощает солнечный свет (к примеру, кремния), и другого, который обеспечивает стабильность разработки (такого как диоксид кремния) – поможет в создании эффективной технологии расщепления воды.
Именно этим способом и воспользовались авторы новой разработки.
Главный прорыв, который удалось совершить исследователям, заключается в создании электропроводящих путей сквозь толстый слой диоксида кремния. Для этого инженеры покрывают диоксид кремния тонким слоем алюминия и нагревают получившуюся структуру. Так получаются наноразмерные "шипы" алюминия по всей поверхности диоксида кремния. После этой процедуры их легко можно заменить никелем или другими материалами, ускоряющими расщепление воды.
Этот метод не требует больших финансовых вложений, более того, его легко можно масштабировать для больших объёмов производства. Это ли не мечта любого сторонника водородной энергетики?
Освещённое солнечным светом устройство эффективно окисляет воду, образуя, с одной стороны, молекулы кислорода, а на отдельном электроде — молекулы водорода. Оно также доказало свою стабильность при длительной эксплуатации.
Внешний вид устройства.
Фото Cockrell School of Engineering/The University of Texas at Austin.
Методы, которые использовались для создания этого устройства, уже широко применяются в производстве полупроводниковой электроники. Опять же, это значит, что их легко будет внедрить в массовое производство устройств, генерирующих водород.
Команда инженеров, создавших этот прибор, уже подала заявку на патент нового устройства. Далее исследователи планируют работать над увеличением скорости реакции расщепления воды. В то же время перед ними продолжает стоять основная задача — эффективное получение водорода с помощью этого устройства.
"Сначала мы смогли обратиться к кислородной стороне этой реакции, это было самой сложной задачей. Но чтобы полностью расщепить молекулу воды, необходимо выполнить реакции выделения как кислорода, так и водорода. Поэтому нашим очередным шагом станет применение существующих идей для создания устройств, обеспечивающих водородную часть реакции", – добавил профессор Юй.
Работа американских учёных была опубликована в июне 2021 года в издании Nature Communications.
Напомним, ранее мы писали о техническом прорыве, который поможет в создании полностью прозрачных солнечных элементов. Сообщали мы и о новом катализаторе, который сделает производство водородного топлива более доступным.
Больше новостей из мира науки вы найдёте в разделе "Наука" на медиаплатформе "Смотрим".
Подробнее читайте на vesti.ru ...