2019-11-7 20:40 |
Картирование связей и колебательных мод молекул, содержащих изотопы серы, помогает пролить свет на химические реакции, которые происходили в атмосфере Земли в эпоху Архея, до того, как атмосфера стала оксигенированной примерно 2,5 млрд лет назад.
Архей - это геологический период, который длился от 4 до 2,5 млрд лет назад. В это время появилась первая жизнь на Земле, но первые микробы были анаэробными, то есть они не дышали кислородом. Фактически, в это время атмосфера Земли не содержала молекулярного кислорода. Вместо этого атмосфера была богата углеродом и, в частности, серой.
Сера в атмосфере архейской Земли испускалась вулканической активностью, и в результате процесса, называемого масс-независимым фракционированием, различные изотопы серы (атомы серы, содержащие одинаковое количество протонов, но различное количество нейтронов) обогащались таким образом, который не коррелирует с их массой. Доказательства того, что это произошло, найдены в поверхностных отложениях, относящихся ко времени Архея, и именно эти изотопы серы, как часть молекул, таких как сероводород (H2S) и диоксид серы (SO2), которые метаболизируются микробами, выделяя кислород в процессе и начало процесса оксигенации атмосферы Земли - развитие, называемое Великим кислородным событием.
Поскольку сера быстро окисляется в среде, богатой кислородом, а затем удаляется из атмосферы в результате выпадения осадков и сброса в океан, химический состав серы ранней архейской жизни был выведен из употребления и утрачен во времени. Однако, понимая процесс независимого от массы фракционирования, должно быть возможно узнать больше об атмосфере предварительно насыщенной кислородом Земли и условиях, в которых жила первая жизнь на Земле.
Процесс, стоящий за независимым от массы фракционированием серы, остается неопределенным, но две наиболее популярные гипотезы - это фотолиз (распад молекул) под воздействием ультрафиолетового излучения Солнца или реакции между элементарной серой.
«Однако фактическое явление, реакцию или механизм еще предстоит определить», - говорит Дмитрий Бабиков, профессор физической химии и молекулярной физики в Университете Маркетта в Милуоки, штат Висконсин.
Бабиков вместе со своими коллегами по Маркетту Игорем Гейдаем и Александром Теплухиным опубликовал в журнале «Молекулярная физика» новую статью, в которой рассматриваются некоторые молекулярные связи молекулы серы-4 (S4) и их влияние на колебательные моды молекулы, которая в свою очередь может влиять на процесс независимого от массы фракционирования.
Они идентифицировали вторую, ранее неизвестную связь, которая объединяет молекулы S2 (содержащие два атома серы) с образованием S4.
«Эта вторая связь надежно удерживает молекулу в форме трапеции и не позволяет легко превращать две молекулы S2 в S4», - говорит Бабиков. «В свою очередь, это расположение атомов серы затем определяет, как они движутся при колебании молекулы S4».
Экстремофилы, такие как термофилы, которые придают микробным матам такие яркие цвета в горячих источниках в Йеллоустонском национальном парке, являются горячей темой для изучения среди астробиологов в Великобритании.
Колебательные состояния или частоты молекулы S4 определяются как формой «поверхности потенциальной энергии» молекулы, которая описывает энергию изотопов в трапециевидном расположении молекулы S4, так и тем, как химические реакции изменяют потенциальную энергию этой системы. Мало того, что число колебательных мод, включая растяжение и сжатие связей между молекулами S2, влияет на скорость реакции, но они также могут быть чувствительными к данному изотопу, который может помочь идентифицировать химическую реакцию за независимой от массы фракционированием.
«Но на данный момент это все еще гипотеза», - говорит Бабиков.
Лучшее понимание роли массового независимого фракционирования в химии серы на архейской Земле не только дает нам картину окружающей среды на Земле до оксигенации, но также говорит нам о потенциальных биосигнатурах, которые может создать подобная среда на экзопланете, пишет AstroBio.
«Изотопы серы потенциально могут служить признаком окружающей среды, которая создала жизнь на Земле», - говорит Бабиков.
Однако, по его словам, наш нынешний уровень телескопических технологий означает, что было бы очень трудно определить изотопный состав атмосферы экзопланеты до требуемого уровня детализации.
Картирование связей и колебательных мод молекул, содержащих изотопы серы, помогает пролить свет на химические реакции, которые происходили в атмосфере Земли в эпоху Архея, до того, как атмосфера стала оксигенированной примерно 2,5 млрд лет назад.
Архей - это геологический период, который длился от 4 до 2,5 млрд лет назад. В это время появилась первая жизнь на Земле, но первые микробы были анаэробными, то есть они не дышали кислородом. Фактически, в это время атмосфера Земли не содержала молекулярного кислорода. Вместо этого атмосфера была богата углеродом и, в частности, серой.
Сера в атмосфере архейской Земли испускалась вулканической активностью, и в результате процесса, называемого масс-независимым фракционированием, различные изотопы серы (атомы серы, содержащие одинаковое количество протонов, но различное количество нейтронов) обогащались таким образом, который не коррелирует с их массой. Доказательства того, что это произошло, найдены в поверхностных отложениях, относящихся ко времени Архея, и именно эти изотопы серы, как часть молекул, таких как сероводород (H2S) и диоксид серы (SO2), которые метаболизируются микробами, выделяя кислород в процессе и начало процесса оксигенации атмосферы Земли - развитие, называемое Великим кислородным событием.
Поскольку сера быстро окисляется в среде, богатой кислородом, а затем удаляется из атмосферы в результате выпадения осадков и сброса в океан, химический состав серы ранней архейской жизни был выведен из употребления и утрачен во времени. Однако, понимая процесс независимого от массы фракционирования, должно быть возможно узнать больше об атмосфере предварительно насыщенной кислородом Земли и условиях, в которых жила первая жизнь на Земле.
Процесс, стоящий за независимым от массы фракционированием серы, остается неопределенным, но две наиболее популярные гипотезы - это фотолиз (распад молекул) под воздействием ультрафиолетового излучения Солнца или реакции между элементарной серой.
В«Однако фактическое явление, реакцию или механизм еще предстоит определитьВ», - говорит Дмитрий Бабиков, профессор физической химии и молекулярной физики в Университете Маркетта в Милуоки, штат Висконсин.
Бабиков вместе со своими коллегами по Маркетту Игорем Гейдаем и Александром Теплухиным опубликовал в журнале В«Молекулярная физикаВ» новую статью, в которой рассматриваются некоторые молекулярные связи молекулы серы-4 (S4) и их влияние на колебательные моды молекулы, которая в свою очередь может влиять на процесс независимого от массы фракционирования.
Они идентифицировали вторую, ранее неизвестную связь, которая объединяет молекулы S2 (содержащие два атома серы) с образованием S4.
В«Эта вторая связь надежно удерживает молекулу в форме трапеции и не позволяет легко превращать две молекулы S2 в S4В», - говорит Бабиков. « свою очередь, это расположение атомов серы затем определяет, как они движутся при колебании молекулы S4В».
Экстремофилы, такие как термофилы, которые придают микробным матам такие яркие цвета в горячих источниках в Йеллоустонском национальном парке, являются горячей темой для изучения среди астробиологов в Великобритании.
Колебательные состояния или частоты молекулы S4 определяются как формой В«поверхности потенциальной энергииВ» молекулы, которая описывает энергию изотопов в трапециевидном расположении молекулы S4, так и тем, как химические реакции изменяют потенциальную энергию этой системы. Мало того, что число колебательных мод, включая растяжение и сжатие связей между молекулами S2, влияет на скорость реакции, но они также могут быть чувствительными к данному изотопу, который может помочь идентифицировать химическую реакцию за независимой от массы фракционированием.
В«Но на данный момент это все еще гипотезаВ», - говорит Бабиков.
Лучшее понимание роли массового независимого фракционирования в химии серы на архейской Земле не только дает нам картину окружающей среды на Земле до оксигенации, но также говорит нам о потенциальных биосигнатурах, которые может создать подобная среда на экзопланете, пишет AstroBio.
В«Изотопы серы потенциально могут служить признаком окружающей среды, которая создала жизнь на ЗемлеВ», - говорит Бабиков.
Однако, по его словам, наш нынешний уровень телескопических технологий означает, что было бы очень трудно определить изотопный состав атмосферы экзопланеты до требуемого уровня детализации.
Подробнее читайте на kapital-rus.ru ...